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The variational problem of the one-dimensional shock-free compression of an ideal (non-viscous and 

non-heat conducting) gas by a plane (v =0) cylindrical (v= 1) and spherical (v=2) piston is 

considered. As in [l, 21, the work of the piston is minimized for a specified displacement in a fixed time 

t,. The time r, taken by a sound wave to traverse the section x,-x,, plays an important role in the 

formulation of the problem. Here x is the Cartesian, cylindrical or spherical coordinate, and x, and x, 

correspond to the piston (at t = 0) and the fixed wall (for v = 1 and 2, possibly, the axes or the centre of 

symmetry). Unless otherwise stated, x,,. c x,, and. the piston in the xt plane moves to the left. In 

formulating the problem in a gas when t c t, no shockwaves are permitted. Hence, if r, CT,,, then to 

the left of the “initial” c--characteristic the gas is unperturbed and can be eliminated from consider- 

ation, i.e. the case r, < T,, reduces to the case t, =z, with smaller 2, and larger x,,.. Unlike 

[l, 21, where the gas at t=O was assumed to be at rest and uniform, henceforth for the zeroth x- 

component of the velocity, variability of the initial entropy is allowed, while for v = 1 a radially 

equilibrium initial twist is permitted. 

ONLY THE case l, < z, was considered in [l, 21, for which, when v = 0, the problem was solved exactly, 
while when v z 0 it was solved approximately (using plane flow of the “simple wave” type). The time $ 
can have any value below. For t, = ~~ an exact solution can be obtained for all v by the undetermined 

control contour method [3]. Here we mean by an exact solution the reduction of the initial problem of 
constructing the optimum trajectory of the piston to the numerical solution of certain problems of one- 

dimensional non-stationary gas dynamics using the method of characteristics. In one of the problems 

solved by the method of characteristics the distribution of the parameters at the final part of the 

“extremal” c+-characteristic, arriving at the end point of the piston trajectory is known. The condition for 
an extremum, which defines this part, turned out to be the same as in the problem of the optimum 

expansion of a piston [4]. 
In the case when t, > z,, the conditions for one other problem solved by the method of characteristics 

are imposed on the section of the horizontal t= t, close to the fixed wall, where the gas is either at rest or 
(when there is a twist for v = 1) is radially at equilibrium. At a certain time t, = Z, > z0 it is at rest or the 
whole optimally compressed gas is in radial equilibrium. For I, > z, this compression (with the same 
work) can be achieved in an infinite number of ways. The optimum compression when t, 2 z, requires 

considerably less work than when f, = z,. 

1. Suppose that, at the initial instant t = 0, an ideal gas is enclosed in a plane cylindrical or 
spherical volume: x, s x c x,. Henceforth, as a rule, the subscripts a, a’, . . . will be attached to 
parameters at the points a, a’, . . . in the ti plane (Fig. 1). We will write a zero subscript for the 
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initial distributions of the parameters. In general, they can be functions of X. In particular, an 
arbitrary initial non-uniformity of the specific entropy S,(X) is permitted. The variability of the 
initial pressure p,, will henceforth be allowed only for v = 1 as a consequence of the twisting of 
the flow-the circumferential component V,,(X) of the velocity of the gas is non-zero. Its x- 
component u at the instant t = 0 is assumed to be zero for all v while for v = 1 and u,(x) f 0 it 
is assumed that pO(x) satisfies the “radial equilibrium” condition 

a~o/ax=p,4/x (1.1) 

where p is the density of the gas. The thermodynamic parameters other than p and s (p, the 
specific volume w = l/p, the specific internal energy e, the enthalpy h = e+plp, the absolute 
temperature T, the velocity of sound a, etc.) are assumed to be specified functions of p and S, 
where 

h = h(p,s), o = o(p,s) = h,, T = T(p,s) = h, 

a-2 = &l,s) = pu = -Up / o2 = 4, / II,‘, h,,, = OPP > 0 (1.2) 

Here h (p, s) is a known function of p and S, and the subscripts p and s denote corresponding 
partial differentiation, the expressions for o and T are a consequence of the thermodynamic 
equation: Tds = dh - codp, while the inequality o, > 0 represents the definition of a “normal” 
gas. Only when it is satisfied will the piston, moving in the gas, form a compression wave, on 
which the characteristics travelling from the piston may intersect [5, 61. In this sense the 
inequality from (1.2), i.e. a consideration solely of gases, called “normal” above, is henceforth 
fundamental. 

The subsequent investigation also remains true for non-zero (and even x-dependent) initial distrib- 
utions of the projections of the velocity vector on the y and z axes for v = 0 and of the axial component of 
the velocity for v = 1. These components, “preserved in the particle”, have no effect on the remaining 

parameters. When v = 2 there are no components of the velocity vector differing from u, in view of the 

assumption of spherical symmetry. 
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If at the instant E = 0, the piston, previously at rest, begins to move in an ideal gas, then, 
under the above-mentioned conditions in the gas, unsteady flow occurs with plane, cylindrical 
or spherical waves, defined by the tangency condition on the walls and on the piston and by the 
equations 

dP 
-;i;+pa ~dp+vpun2=0 du+‘ap-“(&.)LO 

ax X ’ dt pdr X 

Ld+~dJ-=X~U 
dt at ax 

(1.3) 

The fit of these equations is a consequence of the equation of continuity 

(l-4) 

converted taking (1.2) and the third equation of the same system into account. The second equation of 

(1.3) is the projection of the equation of motion on the x axis. The free term in it is only important when 

v= 1, which is ensured by the factor v(2-v). The third and fourth equations of (1.3) are the conditions 
for conservation of entropy and “angular momentum” r in a particle. The latter is only important for 

v=l. 

The equation of continuity (1.4) allows us to introduce the Lagrange variable w, such that 
along any curve in the ti plane 

@ = Kx”p(& - udt) (W 

with an arbitrary normalizing factor K, which we shall henceforth take as positive. According 
to (1.5), w is constant along the particle trajectories (in particular, along the trajectories of the 
fixed wall x=x, and the piston). The intr~uction of w enables us to integrate the last two 
equations of (1.3) 

s=so(w), x’u=l?=r&) (l-6) 

The first integral (the “entropy integral”) only holds when there are no shock waves in the 
flow considered. We will henceforth assume this, unless otherwise stated. 

The first two equations of (1.3) can be replaced by characteristic equations containing 
derivatives only along the c+- and c--characteristics, respectively. Together with the equations 
of the characteristics in the ti and v planes they are equivalent to the following equations 

dr = (14 31 a)dt, dqf = fKx”padt 

(1.7) 

Here the upper (lower) signs correspond to cc (c-)-characteristics. According to the second 
equation of (1.7), for movement along the c+ (c-)-characteristic in the direction in which t 
increases, the Lagrange variable w increases (decreases) monoto~cally. 

The work A done by the piston when it moves for a time tl from point a to point f, the 
coordinate of which x, c x,, apart from a positive factor that is unimportant for the variational 
problem, is equal to 

A = -K)lpx”udt = - KIJ px”dx 
0 43 

0.8) 
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The factor K >O, the same as in (1.5), is introduced here for convenience. 
We will formulate the variational problem. For initial parameters of the gas as specified 

above with t =0, x, s XSX, and a fixed “internal” wall X=X, B 0 (in the ti plane its 
trajectory is the vertical aof”) it is required to obtain the motion of the piston from the fixed 
pointa: X=X,, t=O tothefixedpointf: x=x,=x~, t = t,, i.e. the dependence of the velocity of 
the piston u in (1.8) on t or on X, so that for shock-free flow for t c tf the work A is a minimum. 
The requirement of shock-free conditions indicates, in particular, that U, = 0, while the region 
of perturbed flow in the xt plane is bounded below by the (c-)-characteristic, moving from 
point a. Since u&c) = 0, the time z, mentioned above, according to (1.7) is given by 

a’ a3 

r”=-!a&) -= -IKxvpo~)oo(~) 
As stated earlier, here t, L T,, while in [l, 21, the case c, = T, is considered for a, = const. 

When solving the above variational problem, in addition to (1.8) we will use expressions for A which 
are consequences of the integral law of conservation of energy. The latter, together with the integral law 

of conservation of mass, can be written as 

K$ X’P 
i c u= 

T+h+v(2-v) 
r= 

2x2 (dr-It&)-XV/.&X 
3 

= 

P 
u= E 
T+h+v(2-v) 

~]dy-Kxvpdxj=O (1.9) 

$kfy = K$xvp(& - udr) = 0 

where the integration is carried out along an arbitrary closed contour in the xt, xy~ or vt plane. The terms 
with I? = F2/x2 are important in (1.9) only when v= 1, which, as in (1.3), reflects the factor v(2-v). The 
laws of conservation in integral form (1.9) together with the integral laws of conservation of momentum 
(or the equivalent laws of conservation of angular momentum) are primary, while the differential 

equations (1.3) and (1.4) follow from them in subregions of continuity of the parameters. 

For the subsequent analysis it is convenient to use the functions R(u, p, s) and L(u, p, s), 
which for v = 0 and S, E const are conserved along the c+- and c--characteristics, respectively, 
i.e. in this case they are invariants (“Riemann invariants” [5, 61) of the characteristic system 
(1.7). In the general case we introduce R and L by means of the equations 

2R=u+dQ,s), 2L=u-GQ.4, @(p.s)= 7 * 
m(V) Pa 

where the integral defining @@, S) is taken for constant s = s,(v), and consequently, w also. 
For s,, f const and v +O the functions R and L are not invariants. Despite this, by their 
definition 

u=R+L, @(p,s)=R-L (1.10) 

For fixed w, or what is the same thing for fixed s, by virtue of the definition of R, L and 0 and Eqs (1.2), 
the following expressions for the partial derivatives hold 

144 UR=UL=l* @R=-@,=l, jIo=pa, p@@‘Tp Cl wpp 

(1.11) 
P 1 

ep=---, e p2a2 =--pcopp, hpp z-1 
PP p2a2 p=fX= 

2 PPP =7-P 2 mpp. 1 1 23 
P= 

ap=--+-p a opp 
Pa 2 
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2. In general, the minimized functional (1.8) can be expressed in terms of the difference in 
the energies of the gas when t = tf and t = 0, using (1.9). As a result, apart from a constant term 
that is unimportant when solving the variational problem 

A=5 e+U2 
[ y+v(2-v) $ fi (~=x’“) 

f 1 (2.1) 

By virtue of equality (1.5) which introduces w, when t = const we have (E,’ = dtldv) 

Zzk’-(l+v)/(Kp)=O (2.2) 

In order to take this relationship into account, we set up the auxiliary functional 

Z = A + iNw)W 
f 

where the variable Lagrange multiplier u(w) is to be determined. Any permissible variations 
6R, 6L and St, i.e. the difference between the initial and the varied values of R, L and 5 for 
fixed w, and, consequently, by (1.1) and (1.6) for fixed p,,(v), s(v) and I(w), must satisfy the 
differential relationship (2.2). Hence, the variations of Z and A are the same. Carrying out the 
necessary calculations and taking (1.2) and (1.11) into account we obtain 

~A=(E-F,),A~,+(cI_-cL+)~SS~_+~{(U+X)~+(U-_X)SL- 
f 

E r2 
- P’+v(2-v)2x4 b +(m)2 +(&)2 -$p3a30,(GR-GL)’ +f2@Q2}dW (2.3) 

u2 l+v 
F=e+--- 

p l+v r2 
2 Kp ‘+’ ‘=F Kpa 

+-p, Q=v(2-v)57 

In deriving (2.3) we assumed that a discontinuity is possible at point d in the distributions of 
the parameters on f”f. The parameters to the left (to the right) of d are given a minus (plus) 
sign, and we denote by Av,, the possible increment in w of the point of discontinuity. Since 
shocks when t <t, are forbidden by the formulation of the variational problem, discontinuities 
of the parameters on f”f can only be caused by focusing of similar characteristics at d. If there 
are several points of discontinuity, summation over all of them is assumed in (2.3). 

For any (not necessarily optimal) distributions of the parameters on f”f the multiplier u(v) 
using the arbitrariness of its choice, can be determined from the condition for the coefficient of 
g to vanish on f”f, i.e. the requirement that in each section of continuity of the parameters 

p’+ v(2 - v)lY2 /(2x4) = 0 (2.4) 

Since (2.4) is a first-order differential equation, in addition to it we can put at the point (or 
points) of discontinuity of the parameters 

pd+ =pd- =fld (2.5) 

i.e. make the multiplier p continuous. Then expression (2.3) takes the form 

6A=(+_-F+)dA~d+5[(U+X)~+(u-_X~~+~~~2+ 
f 

+@u2 -$XpJ”3copp(GR-6L)2+R(~)2]dyr (2.6) 
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In all cases when v(2-v)I=O, the multiplier p, chosen from (2.4) and (2.3, is constant. The latter is 
natural because in these situations 5 does not occur explicitly in (2.1) for A. Hence, here, instead of the 
differential equation (2.2), we can take into account its corollary-the isoperhnetric condition 

(2.7) 

This condition is included in the auxiliary functional I = A + LX by the constant Lagrange multiplier h, 
which is identical with u = const. 

Suppose now that t, = 7,. Then the points of discontinuity may be the result of focusing of 
only the c--characteristics, as shown in Fig. l(a). In the plane isentropic case (v = 0, s, = const), 
for which an exact solution of the variational problem was obtained in [l, 21, in the triangle 
af”f one obtains a simple wave with R = 0 and rectilinear c--characteristics. Since here 6R = 0, 
Q 3 0 and 5 = X, we have from (2.3) and (2.4) 

+u (2.8) 

with l.t=const at least on each section.of continuity of the parameters. By specifying X, and 
taking this fact into account using Eq. (2.2), integrated from fixed +, we obtain a method of 
determining these constants. To do this a “compensating” point k is introduced on each such 
section, at which, due to the arbitrariness of the choice of l.t, the coefficient of 6L in (2.8) 
vanishes. This gives 

(pa)k(u-xX)k =(w-P-cL/WC = 0 

Now, by varying L in the neighbourhood of any point different from k of the corresponding 
section, we will simultaneously so vary L in the neighbourhood of k so as not to change the x 
coordinate of the right boundary of this section. Then, for fiied L on the other sections we 
ensure that all wd and X, and specified X, are unchanged. Because of this the variations 6L can 
be regarded as independent and, consequently, on each section of continuity of the parameters 

Pab-x)=fJau-p-p/K=0 (2.9) 

In the case considered the flow in af”f is a simple wave. Hence, the parameters of the gas in 
(2.9) are functions of one of them, for example, u = L. Consequently, on each section of 
continuity of the parameters they are constant, and the optimum trajectory of the piston may 
consist only of sections of constant velocity and sections of acceleration, which ensure that 
C-characteristics issuing from them on f”f are focused. We will show that the focal point of 
the characteristics is unique and that it coincides with f”, as shown in Fig. l(b) (the x and t 
axes are not shown on it or henceforth), By taking the point that is “furthest to the right” we 
can calculate the coefficient of Avd at this point from (2.8). Substituting l.t+, found from (2.9), 
into it, and temporarily dropping the subscript d, we obtain 

qmF_-F+=e_+u!/2+(p+au)+/P_-h+-u:f2+a+u+ (2.10) 

This difference is a function of L_ and L+, and is equal to zero when L+ = L_. By (1.2) and 
(1.11) we have 
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a’p= 2a l-p+ 
( _I( 

I-Lp’a’w,u 
ar, + p 4 1 + 

When the compression waves from the accelerating piston moving to the left are focused, 
U, c 0, p, /p_ > 1, and L+ = u+ c L_ = u_. Since o, > 0, we hence obtain that &plaL+ c 0, (I? - 
F+)d = qd > 0 and for Avd c 0 the variation 6A c 0. Negative values of Avd are obtained for 
x, > X~ by a shift of the corresponding acceleration section of the piston “downwards” (i.e. by 
reducing the instant when the acceleration begins) with a slowing down of the piston (with 
respect to the modulus of the velocity) such that the point of intersection of the 
c--characteristics issuing from the piston are shifted along f”f to the left. The preceding parts 
of the trajectory are then not varied. Hence, to the left of the discontinuity considered SL = 0, 
6.x = 0, and consequently, at the point d investigated: 6x,_ = 0. All the increments Avd of the 
other points of discontinuity (if such points exist) are also equal to zero. The part of the 
trajectory close to f, although it is also corrected to ensure that the piston arrives at the 
specified final point, nevertheless, by virtue of (2.9), it does not make a contribution to &A that 
is linear with respect to 6L. It can be shown that the contribution @L)* in this way of variation 
has a higher order of smallness than Aw,,. It follows from this that our assertion is correct. In 
the case of Fig. l(b) the piston, after acceleration, moves with a constant velocity. For such a 
trajectory, taking (2.9) into account we will have instead of (2.8) 

(2.11) 

with (pd >O, where cp, is calculated from (2.10), and e_ =eO while u_ =O. In (2.11) the point d 
coincides with f” and now the permissible Avd, unlike the internal focusing points, are non- 
negative. This is ensured by “raising” the acceleration section a6 while simultaneously 
increasing the velocity of the piston (in modulus) along it. We will denote by FL = 6% the 
variations of L and u along the trajectory when t = const. Then, using this method of varying 
the trajectory &‘u>O in the neighbourhood of point a and, conversely, ~YUC 0 when t c t, in 
the neighbourhood of point b, i.e. along ab the permissible 6% are not at all sign-constant, as 
was assumed in [l, 21. When using (2.11) it is not the sign-constancy of 6% along ab that is 
important, but the non-negativity of AvI. Since, together with (Pi z=O in the problem 
considered o,uc 0, then, by (2.11), any permissible variation of the constructed trajectory 
(Av,, 2 0, 6L on df = f”f are arbitrary) increases the work. Consequently, it is optimum. 

The non-equivalence of the approaches based on the expressions for A in the form (1.8) and (2.1) is 

due to the fact that the original problem, “formulated on a trajectory”, is, at fist glance, only a problem of 

optimal control with ordinary differential equations. The point is that the condition for there to be no 

shock waves on uf”f for a flow described by partial differential equations cannot be replaced here by a 
simple limitation on the velocity of the piston (or on the sign of 6%) on the acceleration part of the 
trajectory. Such a situation is typical for gas dynamics where different forms of writing the optimized 
functionals usually supplement one another. 

3. In the light of the last statement, we will begin our consideration of the case t, > z, by 
formulating the problem of the required trajectory for a plane piston and s, = const. We will 
take the work A in the form (1.8) and the isoperimetric condition is the specification of the 
difference in the coordinates of the piston 

X=x,-x,=&it 
0 

and we will introduce into the auxiliary functional Z = A + XX a constant Lagrange multiplier 



800 A. N. KRAIKO 

h. Suppose (Fig. lc, cd is the c+-characteristic) that the specified t, is such that x, d x,. Then, in 
acdf we will have a simple wave with R = 0 and L = u, and taking this into account we obtain 

(3.1) 

Omitting for the moment the considerations in Sec. 2 on the formulation of the conditions 
for no shock waves when t et,, by analysing (3.1) we can obtain the optimum trajectory which 
the flow achieves, shown in Fig. l(d). The part on which the piston moves with constant 
velocity adjoins the acceleration part, as in Fig. l(b). Now, however, the c’-characteristics are 
focused at point d, and depart from the walls as a reflection of the c--characteristics, arriving 
from ab. In bgdf the gas parameters are constant, and in particular u = const c 0, while in the 
triangle ef”d the gas is at rest, being slowed down to a simple compression wave edg. On bf 

Qb)=()au-p-h/K=0 (3.2) 

and on ab: Q > 0. The latter is a consequence of the fact that, by (1.2) and (1.11) 

- +z+o, u z 0 

Q* = 0 and u > u, when t < fb. By virtue of this inequality on bf there cannot be “internal 
acceleration sections” such that the c--characteristics running from them are focused on f”f 
without reflection or with reflection from the walls. 

Condition (3.2) can be obtained in the same way as the similar equation (2.9), apart from the 

replacement of f”f on the trajectory uf. Taking the compensating point on qf, one must vary the 

trajectory in all allowable ways. One can, for example, in addition to the neighbourhood k change u in the 
neighbourhood of only one point of the acceleration section. In this variation 6% are positive on ab, 
because for 6”ucO part of the c’characteristics of the pencil would intersect close to d when l< t,. For 
g”u>O on ab the positiveness of cp on the acceleration part gives 6A >O, which is not unlike the way in 

which the optimality of the trajectory constructed is proved. Unfortunately, however, here, as in the 
analysis in [l, 21, for t, = z,, the possibility that 6% c 0 on ab in the variation with a “rise” of ab, described 
in Sec. 2, is not taken into account. On the other hand, for an arbitrary variation of u = L on bq, 
perturbations proceeding along the c--characteristics deform the pencil of c+-characteristics, which may 
cause them to intersect when t c t,. Consequently, variations of 6% on this section are not arbitrary and 

in this sense condition (3.2) which makes the linear term in (3.1) vanish, is excessively severe. When 
v = 0 and s,, 3 const the latter, it is true, unlike the general case (Sec. 6) does not impair the solution 

constructed. These considerations, and also the desire to carry over the scheme shown in Fig. l(d) to the 
general case, justify investigating it by transferring to the section f”f. 

After transferring to f”f, i.e. to expression (2.6) for the flow with u z 0 on f”d for any v, s, 
and I we obtain 

ti=(F_-F.),A\y,+ i 
P 

-~p3a30,(6R-GL) (6R-6L)+ 1 
+@Ry +(61J2 +n(65)2]hy+i[(u+x)6R+(u-%)6L+(6R)2 + 

d 

+(U2 +p3030pp - SQ2 + ci(tQ2 I CA+4 (3.3) 

In the plane isentropic case, when R = 0, while 6R I R = 0 on df, as in Sec. 2, L = u E const on 
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d’, and is defined in the triangle dfs by condition (2.9) with p = const. As a result, expression 
(3.3) is simplified somewhat 

cQI = (F- - F+ L&d + ; 1 - $p303w, (6R - 6L) (6R - 6~) + 
P I 

+(6R)2 + (sL)2)fQ + 5( l- $3303mppu)@L)2dW (3.4) 

In the flow investigated u=O, usa, in efod, while in the pencil edg all the c’characteristics are 

rectilinear. On reflection from the wall, where u = R+ L = 0, the perturbations R are reflected by the 

perturbations L of opposite sign. Taking these facts into account it can be shown that the same variations 

of L or -R in the a-neighbourhood of an arbitrary point f”d, which we will represent by the quantity 

cause the same deformation of the pencil. When making an analysis with a transfer to f”f, the 
discontinuity at point d is shifted, without being spread out (if the optimum distribution of the parameters 

on f”f is continuous, the discontinuity is not introduced from the beginning!). Hence, the spreading out 
of the pencil connected with o # 0 should be compensated by a correction of the initial part of the 

trajectory such that the intersection of all the characteristics of the pencil occurs for a specified t= l,. It 
can be shown that this causes a shift of the beam proportional to o. In addition to this, independent 

variation of the acceleration part with a “rise” and a shift of d to the left is permissible. Consequently, 
Avd =AvdO +Ncr, where N is a certain coefficient which depends on the flow in the pencil edc, while 

Av,, G 0. 
We recall that “consideration on the trajectory” only left open the question of the variation with a 

“rise” of its initial part, which, in the expression derived above for Avd, corresponds to A\yd,,. Bearing 
only this fact in mind, instead of (3.4) we obtain 

&I = (F_ -F+)‘,AvdO+... (35) 

Here the dots denote terms due to (T # 0 on f”d and (6L)2 on df. When solving the problem of interest 
to us it is sufficient to determine the sign of cp = (F_ - F+ldr where now, unlike (2.10) cp=cp(R_, R,), but 

like (2.10)’ cp(R_, R_)=O. Taking (2.9) into account and the fact that in the case considered u_ = 0, and 

temporarily omitting the subscript d, we obtain 

cp+h,-u:+ l-p+ 
2 ( b P- 

+u++lkdL 
P- 

(3.6) 

In the case investigated p+ <p_, p+ <p_ and u+ < 0, by virtue of which all the terms on the right-hand 
side of (3.6), apart from the first, are negative. This, of course, is insufficient for the negativeness of cp, in 

particular h_ -h+ > 0. Recalling that cp(R_, R_) and R, 4 R.., we obtain 

where the second equality and inequality hold for an ideal gas with adiabatic index K. Hence, at least for 
an ideal gas with K c 3, it necessarily follows that cp < 0 and, by (3.5) &t 3 0 when AvdO c 0. Here, as in 
Sec. 2, it can be shown that when there is a “rise” of the acceleration section of the trajectory, terms 
denoted by dots in (3.5) are of a higher order of smallness than @wdO. 
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4. For v= 0 and s, = const the set of formulations of the variational problem on the 
trajectory and in the section t = t, enables us to prove that the trajectories which give the 
scheme of the flow in Fig. l(b) and (d), in fact ensure a minimum of A. For arbitrary v, s, and 
I one cannot carry out such a complete analysis as is typical for variational problems in gas 
dynamics. Moreover, the formulation on the trajectory in general does not occur, since the 
solution with R=O (a “simple wave”) is not justified. The possibilities of transferring to the 
section t = tf are also reduced. On the other hand, the requirement that there should be no 
shock waves when t <tf indicates that the schemes shown in Fig. l(b) and (d) (naturally with 
ufconst on bf and with curvilinear characteristics of the pencils) where “checked for 
optimality” for any v, s,, and I. This “check” is particularly simple in the special case of the 
scheme shown in Fig. l(d), when points d and f coincide (Fig. le). A similar situation may 
occur when tf 3 z,, where the previously mentioned time z, is determined during the 
solution. 

Basing on (3.3), i.e. on the transition to f”f, it can be shown that when t, a I,,, in general the 
solution with u = 0 is optimal on f”f, and as a consequence in ef”f. When u = 0 on f”f (3.3) 
reduces to 

where permissible values of Av,, c 0, when calculating cp = (F_ - F+),, from (2.5) I-(+ = l,t_, while 
the parameters with the plus and minus subscripts are related by the conditions: L, = L_ and 
R+ c R_. These conditions correspond to a variation of the trajectory with a “rise” of its 
acceleration section, when the focal point of the c’-characteristics is shifted to the left along 
f”f. If t/>T,, such a way of variation is possible for which the pencil of c--characteristics 
reflected from the varied trajectory arrives at point d. In this case at d: R+ = R_, while L, <: L_. 
For any permissible way of variation Avd s 0 and x(6R - 6L) is a unique linear term which is 
not prevented from being sign-variable. Hence, by investigating the flow scheme shown in Fig. 
l(e) with u E 0 on f”f for a minimum of A, it is natural to equate the factor x to zero and to 
consider that this is given. Thus, let us suppose that on f”f 

pa~‘~+(l+V)~/K=O (4.2) 

We recall that the multiplier u that occurs here, apart from the specification, for example, of u,., is 

defined by differential equation (2.4). If, according to (4.2), we put ur = -Kpr /(l+ v), then (2.4) and (4.2) 
define u and p over the whole section f”f. Differentiating (4.2) with respect to x and eliminating 
u, = p’w, = Kx’pu’ itsing (4.2) we obtain that on f “f 

aP 
2 

~=v(2-v)~ 
x 

(4.3) 

i.e. either p~const or (for v= 1 and ISO) the flow is radially in equilibrium. By (1.3) both this and the 
other ensures that u 3 0 and p = const, and for v = 1 and r f 0 it ensures radial equilibrium of the flow 
over the whole triangle ef” f. 

By virtue of (4.2), instead of (4.1) we obtain 

84 = (pdwd + ~1(6R)2 + (6Q2 + n@J2 I@ (4.4) 
f” 

Since n 3 0 and Avd =z 0, it remains to determine the sign of cp for the ways described above 
for varying the trajectory. Expressing p in terms of p_ from (4.2) and, as previously, omitting 
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the subscript d, we obtain that now 

q=h__e+_P-_$ $ 
P+ 

=--u++~>() 
+ P+a+ 

*=_, + P+-P- >o 

aL+ + P+a+ 

Here &plaR+ is determined for the situation in which the pencil of c’-characteristics is 
shifted to the left, while i@/aL+ is determined for the pencil of the c--characteristics emerging 
from the trajectories. In both cases, U+ c 0, but in the first of these b_ > p+, while in the second, 
on the contrary, p_ <p+. Moreover, as already pointed out, cp(R_, R+) and cp(L_, L+) vanish for 
R+ = R_ and L+ = L_, respectively, while R+ CR_ and L+ c L_. Hence, in both situations cp c 0 
and for any permissible variation of the trajectory of the piston (Avd =G 0, the signs of 6R, 6L 
and g on f”f are arbitrary) 6A is non-negative by virtue of (4.4). Consequently, the solution 
obtained gives a minimum of A. 

5. The practical construction of the optimum trajectory corresponding to the scheme shown in Fig. l(e) 

and the determination of the interval z,,, reduces to the numerical solution of the following problems. 

Initially, using the specified distributions of the parameters at 1 = 0 the overall mass of gas 

M = jxvpo (x)dx 
a0 

is calculated. The normalizing factor K is equal to l/M. With this choice of K and waO =0 on the piston: 
w. = 1. Then for the same initial distributions from (1.5) with dt = 0 one calculates w = W,(X), and as a 
result of this, the right-hand side of (1.6) and p,,(v) satisfying the condition of radial equilibrium (1.1) are 

determined. Then the parameters of the gas on f”f, differing from u ~0, are found using (1.6) by 

numerical integration of Eq. (2.2), in which p = p[p, s,(w)], and of radial equilibrium equation (4.6). It is 
convenient to use the latter in the following form 

p’a*=“(2-“) r2 
aur 2 K5 

The arbitrariness in choosing the pressure pr. > p,(O) is used here to satisfy the condition: 5(l) = 5, 

= XT for specified x, c x.. As already noted, the radial equilibrium flow calculated in this way (or for 
v(2 - v)T = 0 -a stationary gas, in which p = p,) is preserved over the whole triangle ef”f, bounded 
below by the c’characteristic ef. Further calculation is carried out from the section f”f in the direction 
of decreasing time, the origin of which at this stage is conveniently taken to coincide with this section by 

putting r, = 0. The characteristic ef is constructed by integrating the second equation of system (1.7) with 
a plus sign and pa is a known function of w. The integration is carried out from the point f at which w = 1 
and t = 0. The dependence of x on w along ef is the same as along f”f. The “condition of compatibility” 

(the third equation of system (1.7)) which for’ u n0 in ef’f reduces to the condition of radial 

equilibrium, is satisfied automatically. 
From the data on ef and the tangency condition u = 0 on the fixed wall (w = 0, x = x,_, t < t,) the pencil 

of c+-characteristics is calculated (when the calculations are carried out in the direction in which t 
decrease-the pencil of rarefaction waves) to the point c where the pressure, falling continuously as time 
decreases, becomes equal to the previously known value of J+,(O) < p, = p,_. The construction of the 
“initial” c--characteristic ca, which bounds the stationary or radially equilibrium gas in the triangle u“ca, 
leads similarly to the construction of the c’characteristic ef with the already known factor K and the 
dependences \v = v,(x) or x = x,,(v) which hold on cu. As a result of this calculation the time to < 0 is 
found, and from it also z, = -t. > ~~ (in typical situations 2, > 22,). After determining t, by changing the 
origin of coordinates t, solving the Goursat problem with data on the characteristics fc and cu and 
determining from it the line af, on which w = 1, we obtain the trajectory of the piston. The value of z, 



804 A. N. KRAIKO 

obtained, is the minimum time for which the shock-free compression of the stationary or radially 

equilibrium gas to the same state with high average density is possible. Guaranteeing this compression of 
the piston trajectory is unique. For f, > Z, this problem has an infinite set of solutions. 

Using the same method, taking wd < 1 and xd < x,,(v,), one can calculate the flow, shown in Fig. l(d,) 
up to the c--characteristic qd and obtain the part of the trajectory aq. However, in general vz 0 or 

s0 l const, when ufconst on bf, the data on the characteristic qd obtained in this way is insufficient to 
construct the final part of the trajectory d The position for the scheme shown in Fig. l(b) is similar with 
the sole difference that here the calculation by the method of characteristics with v # 0 and x,. = 0 must 
be supplemented by the self-similar solution describing the focusing of the characteristics at f”. In this 
scheme, after determining the flow on the c--characteristic uf” and calculating the pencil of compression 
waves from the point f” and the trajectories beginning at the point a (w = 1) one need only construct its 
acceleration part of previously unknown extension. To construct the end section of the optimum 
trajectory in the case shown in Fig. l(b) and (d) with v# 0 or s0 f const additional information is 

necessary 

6. The information necessary to construct v #O or s, f const of the final parts of the 
optimum trajectory in the schemes shown in Fig. l(b) and (d), is obtained, as mentioned, by 
the method of undetermined control contour (MUCC). To do this, by (1.9), we express A in 
terms of the integral over the as yet undetermined but fixed control contour alf. The integral 
by parts of the contour lying below the c--characteristics af” and ac does not change when the 
trajectory varies. Hence, when solving the variational problem only the section lf is important. 
If Zf in the vx plane is specified by the equation x = x(v) and its corollary x’ = x’(v), we obtain 
the following equation for A taking this into account 

A={ 
/ C h+$+v(2-v)$-KxVx’y dyJ 1 

Similarly, the specification of tf by virtue of (1.5) is equivalent to constancy of the integral 

For vd c w, and alf, which with f “f has a unique common point f, the parameters of the gas 
onZf are continuous both for the trajectory investigated and for the varied trajectory. Hence, 
by setting up an auxiliary functional Z = A + hz with constant Lagrange multiplier h, we obtain, 
after necessary calculations, that 

SA=S/=j[r(l-h)SR+l(l+A)SL+(g+f)(SR)*+(g-k)(SL)*+ 
I 

+2(1-A-g+ f)SRSL]dly (6-l) 

r=u+n-x’KxVpa, l=u-a+xxIKxvp~ 

g=(r-rr+hu)p3a3w,/4, f =rAlu 

k=IA/u, A=hf(KxVpau2) 

Using the arbitrariness in the choice of the undetermined control contour or, which is the 
same thing, the function x’(v), the factor r in front of Sr vanishes. As a result we obtain 

X’ = (u + a) / ( Wpa) (6.2) 

i.e. by (1.7) lf is the section of the c’-characteristic. The vanishing of the coefficient in front of 
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the linear term remaining after this in (6.1) gives the necessary condition for an extremum: 
A = -1, or, taking into account the expression for A 

xvpuu2 = const = -1 I K (6.3) 

This condition cannot be satisfied over the whole characteristic C, in particular at the point 1 where 
u = 0, because in this case, from (6.3) u = 0 on If. The latter is possible in the special case of a fixed piston, 
which is of no particular interest. In the case of the scheme shown in Fig. l(b) and (d), only the end 
sections of the trajectory of the piston, which corresponds to the section hf of the characteristic If, remains 
to be constructed. Hence it is natural to use (6.3) only on hf, thereby closing the problem of constructing 
the whole required trajectory. At the same time, for z, < r, c z, (Fig. Id) it remains tempting to extend 

(6.3) to the section nh, especially as, when v = 0 and s0 I cons& this, like the “formulation of the problem 
on a trajectory”, gives u = const everywhere in bgdf and u e 0 in ef”d, An attempt to extend (6.3) to nh 
does not, however, pass the test of being the optimum solution for r, =z, (Fig. le). In fact, for 

++?n -0 the section nh becomes the part uf (Fig. le) of the “closing” characteristic of the pencil of 

c+-characteristics, and (6.3) is certainly not justified on it. The deep reason for the non-validity of 
extending (6.3) to nh is the non-arbitrariness, pointed out in Sec. 3, of the variation of u along the part bq 
of the trajectory of the piston and as a consequence of this the variation of L along nh . 

Taking (6.2) and (6.3) into account as well as the above discussion, expression (6.1) for &A 
takes the form 

&t = 2ju(l+ *)sL@ + ~t+z%$#Q?)’ +2(1 -~pVo,u)(sL)2 + 
I 

+(4 + p3030,u)6R6Ll~ (6.4) 

In the integral over lh, where 1 + A f 0, the quadratic terms are unimportant. 

When only the end section of the trajectory qf is varied, when 6L I 0 along lh, it can be shown that 6R 
has a higher order of smallness along hf than 6L. Hence it follows that the necessary condition for the 
section to be optimal (a minimum of A) is the inequality l-p3a3w,u/4>0, which is necessarily satisfied 
in the problem considered in which wppu c 0. 

When analysing the contribution of the integral over fh from (6.4) the sign of (l+A) is important. 
Substituting the constant h into the formula for A, expressed in terms of the parameters in h by (6.3), we 
obtain 

1+ A = 1 - (xvpauz)h / (xVpau2) 

By virtue of (1.11) and (1.7) along any c’characteristic 

~(.~vpau2)=xvp. l-~p3u3w~~u)~+vxypou2 
( [ ( 

u- +4w,-1 f.4 + 11 
+v(2-v)xv-l 4 4 2 2 

2 P 0 wppu lJ 

Since u GO, for v#O the second and third terms on the right-hand side of (6.5) are positive (although 
for the second term this assertion is possibly categorically unnecessary, in the case of an ideal gas with 
K 2 1 this is necessarily so). Along hf the left-hand side of (6.5) is zero. Consequently, when v # 0 along 

hf the velocity of the gas is reduced in absolute value. Along the acceleration sections (along Ih and along 
bt, respectively, for Fig. lb and d) u2 increases, and of course, xvpuu2 also increases. In the case of Fig. 
l(b) it therefore follows immediately that along Zh: l+A < 0 and u(l+A)aO. If the trajectory of the 
piston is varied without a “rise” of its acceleration part, it can be shown that for Fig. l(b) in the most 

general case along UI one can have 6L B 0 and consequently 6A > 0. Variation with a “rise” of the 
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acceleration section and the more complex case shown in Fig. l(b) require additional investigations. 

For s, = const and r = const we can apply the method of undetermined control contour in 
the M plane also. Here, instead of (6.3), to determine the section hf of the extremal c+- 
characteristic we obtain 

2h+u* - 2au + v(2 - v)r*x-* = const 

The condition (6.3), obtained for arbitrary s0 and I also holds along I$. As in variational problems of 
steady supersonic flows [3], the compatibility condition for the c’-characteristics follows from (6.3) and 
(6.6) with s,, L con.9 and I I const, i.e. in this case on the extremal characteristic (6.6)-the integral (1.7). 
It has already been pointed out that (6.3) and (6.6) with I = 0 are identical to the conditions defining the 

“extremal” characteristic of the problem of the optimum expansion of the piston, solved for I E 0 in [4]. 
For v=O and s 0 a cons& when the schemes shown in Fig. l(b) and (d) in addition to the compression 

waves, by the construction of the focusing for t = $, contain only regions of constant parameters, the 

absence of shocks for t c r, is guaranteed. The construction of the optimum trajectory in the case of Fig. 

l(e) after inverting t is equivalent to the problem of profiling a supersonic nozzle which converts one 

parallel axis of the flow into the same flow with a higher velocity. Experience in profiling such nozzles 
does not reveal the occurrence when calculating them of a “gradient catastrophe”. The position with the 
structure of the “optimum” flow from the left from the characteristics bf” and qd in Fig. l(b) and (d) is 
similar. The remaining open question (for v# 0 and s,, f const) of whether a gradient catastrophe is 
possible from the right of these characteristics can only be solved by specific calculations. 

Above, shock waves and the increase in s when t < r, prevented the problem being formulated. On the 

other hand, this obstacle may also result from physical considerations, according to which an increase in s 
represents additional losses, and is just like,an increase in A. We will consider how one can verify these 
considerations in analysing the expression for &A, including an increase in s at the jumps that occur when 
t c r,. For the scheme shown in Fig. l(e) if we assume that s = s,(v) + 6s since 6s 2 0, then the following 

additional term will occur in 6A 

84 =...+ fT&& 
f 

(6.7) 

where the dots denote the right-hand side of (4.4). When obtaining (6.7) we took into account the fact that 
h, I @h/&), = T, and by virtue of (4.2) x = 0 on f”f. When 6s > 0 the term 6s in (6.7) in fact increases A. 
For Fig. l(b) and (d), i.e. for t, < z,, the above-mentioned “physical considerations” are not in general 

true. For example, for v = 0 and s0 E const one can so increase the velocity of the piston along ab that the 

jumps which occur in the compression wave when t < t, do not change R=O along af. In this case A 
decreases. 

All the above discussion can be transferred to the case x, <x,, when the piston and the wall change 

places (when v f 0 the wall becomes “external”, and the piston expands “inwards”). The flow patterns, 

which will therefore change the schemes shown in Fig. l(b) and (d), are shown in Fig. l(f) and (g). The 

main difference in this case is the fact that the velocity u is positive and the roles of the c+- and 
c--characteristics are interchanged. In particular, (6.3) is now satisfied along hf-the section of the 
c--characteristic, and instead of (6.6) with s0 = const and I ~const along hf in addition to (6.3) the 
following relation holds 

It is more fundamental to replace the walls by a second piston. This problem for I, > z,, and an 
arbitrary position of the points f and f” cannot be reduced to the superposition of the schemes shown in 
Fig. l(d) and (g). 

7. We will compare the work A, expended in optimum compression when t, = z,, v= 0 and 
s0 =const, with the work A, which is required for the optimum compression of the same gas when 



One-dimensional isentropic compression of an ideal gas 807 

r, = z,,, in the scheme shown in Fig. l(e), for which the result is independent of v (for v = 1 -when there 
is no twisting). If we take the initial density and velocity of sound as the scales of density and velocity, we 
have p0 = a, = 1 and e, = ~/[K(K-l)]. In the cases compared the parameters of the gas for f = r, are 
independent of x. Hence, by finding A in terms of the difference in energies for t = t, and t = 0, we obtain, 
for an ideal gas 

4l= 
(3K-1)a; -4Ku,+K+lM A +1 

K(K-I)* 
9 --M 

m - K(K-1) 

ajM 
E,,, =- 

K(K-1) 
, Q_ A, _(3K-l)aj-4qlUlf+):+l 

- 4, (K - Ma; - 1) 
(7.1) 

+1 
+- (U-W 

4 
9 af =Pf 

In 

Here M is the mass of compressed gas, and Em = Me is its total energy, and when obtaining A, we 
used the relationship between u, and a, for a simple wave with RE 0. By virtue of (7.1) a + 1 when 
p, -+ 1 and a + (3~ - l)/(~ - 1) when p, + 00, i.e. for infinite compression of the gas. In fact, however, 
despite the extremely simple relationship between a and a, and between a, and p,, the approach of a to 

its limiting value for real KG 1.4 as p, increases occurs extremely slowly. This is shown in Fig. 2, in which 
for different values of K the continuous curves give the values of a as a function of lg p,. It can be seen 
that, for example, for K = 1.1 even with p, = 10” the ratio of the works is far from its limiting value. 
Nevertheless, a considerable gain occurs for compression after a time t, = z, even for medium p,. For 
1 s p, d 9 this can be clearly seen from Fig. 3. The dashed curves and the scale on the right in Figs 2 and 3 

represent q-the fraction of the work in the final energy of the gas. 

I wish to thank V. A. Vostretsova and N. I. Tillyayeva for their help, and also A. I. Rylov for 
useful discussions. 
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